3-Uniform hypergraphs of bounded degree have linear Ramsey numbers

نویسندگان

  • Oliver Cooley
  • Nikolaos Fountoulakis
  • Daniela Kühn
  • Deryk Osthus
چکیده

Chvátal, Rödl, Szemerédi and Trotter [1] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. We prove that the same holds for 3-uniform hypergraphs. The main new tool which we prove and use is an embedding lemma for 3-uniform hypergraphs of bounded maximum degree into suitable 3-uniform ‘pseudo-random’ hypergraphs. keywords: hypergraphs; regularity lemma; Ramsey numbers; embedding problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EMBEDDINGS AND RAMSEY NUMBERS OF SPARSE k-UNIFORM HYPERGRAPHS

Chvátal, Rödl, Szemerédi and Trotter [3] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In [6, 23] the same result was proved for 3-uniform hypergraphs. Here we extend this result to k-uniform hypergraphs for any integer k ≥ 3. As in the 3-uniform case, the main new tool which we prove and use is an embedding lemma for k-uniform hypergraphs of boun...

متن کامل

D ec 2 00 6 EMBEDDINGS AND RAMSEY NUMBERS OF SPARSE k - UNIFORM HYPERGRAPHS

Chvátal, Rödl, Szemerédi and Trotter [3] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In [5, 19] the same result was proved for 3-uniform hypergraphs. Here we extend this result to k-uniform hypergraphs for any integer k ≥ 3. As in the 3-uniform case, the main new tool which we prove and use is an embedding lemma for k-uniform hypergraphs of boun...

متن کامل

On the Size-Ramsey Number of Hypergraphs

The size-Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analogous to the graph case, we cons...

متن کامل

On the Ramsey Number of Sparse 3-Graphs

We consider a hypergraph generalization of a conjecture of Burr and Erdős concerning the Ramsey number of graphs with bounded degree. It was shown by Chvátal, Rödl, Trotter, and Szemerédi [The Ramsey number of a graph with bounded maximum degree, J. Combin. Theory Ser. B 34 (1983), no. 3, 239–243] that the Ramsey number R(G) of a graph G of bounded maximum degree is linear in |V (G)|. We derive...

متن کامل

Minimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs

A uniform hypergraph H is called k-Ramsey for a hypergraph F , if no matter how one colors the edges of H with k colors, there is always a monochromatic copy of F . We say that H is minimal k-Ramsey for F , if H is k-Ramsey for F but every proper subhypergraph of H is not. Burr, Erdős and Lovasz [S. A. Burr, P. Erdős, and L. Lovász, On graphs of Ramsey type, Ars Combinatoria 1 (1976), no. 1, 16...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2008